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Introduction

Planetary orbital missions are often designed to fly through
atmospheric layers dense enough to significantly alter
the spacecraft velocity during a single orbit pass. On the
one hand, such a maneuver can be used to circularize the
orbit and lower the periapsis using much less fuel than
what would have been necessary directly using a rocket
engine (aerobraking). On the other hand, lowering the
orbit periapsis of a scientific probe can be useful to per-
form in-situ observations in the lower thermosphere and
mesosphere, increase the precision of the gravity field
measurements, or improve the mapping of surface prop-
erties like the crustal magnetic field (e.g. the MAVEN
mission to Mars, to be launched in 2013).

To accurately compute the orbital perturbation due
to the atmosphere, engineers must usually couple nu-
merical simulators of the spacecraft navigation with at-
mospheric model of the density and the winds in order to
integrate the action of the atmospheric friction timestep
after timestep. We have developped such a tool by com-
bining the state of the art satellite orbitography model
Ixion with the LMD Mars General Circulation Model
throught the Mars Climate Database (see Millour et al.,
this issue)

However, on the basis of theoretical considerations
and thorough validation, we have discovered that the
orbital perturbation due to the atmosphere can be calcu-
lated with very high accuracy using a simple analytical
equation combining the orbit parameters and the atmo-
spheric density and scale height at a single point: periap-
sis. The equation is derived from the complete equations
of atmospheric motion around a planet and through the
atmosphere, and take advantage of the fact that if the
orbit is non circular (an eccentricity larger than 0.03 is
sufficient), the time spent in the dragging atmosphere
is short and the spacecraft velocity relatively constant
while in the atmosphere.

The main uncertainty lies in the assumed atmo-
spheric winds. If the actual value of the velocity v′0
relative to the atmosphere at perihelion (i.e. v′0 com-
puted with respect to planetary rotation and atmosphere)
is known, the expression of the atmospheric drag over

one period is simply:
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with ρ0 and v0 the atmospheric density and velocity
at periapsis, rp the distance between periapsis and the
center of the planet, µ = GM is the central attractive
constant (for Mars µ = 4.282 837 1013 m3 s−2), e the
eccentricity, and H the scale height of the atmosphere at
periapsis. k = B/2 with B = CdS/m the so-called bal-
listic coefficient derived from the probe aerodynamical
data and surface.

In practice, the atmospheric circulation is not easy
to estimate. It typically requires a general circulation
model. An approximation is to the neglect the atmo-
spheric winds and assumes that the satellite velocity
relative to the atmosphere is the velocity in the galilean
frame.

This is especially valid for polar orbits.In that case,
the atmospheric drag over one period simply becomes:

∆v = k ρ0

√
2 π µ

1 + e√
e

√
H (2)

Such an equation can be useful to design future
missions. For instance, future aerobraking or scien-
tific "deep dip" campaign can be optimized by choosing
the best combination of season, local time, latitude or
longitude for the periapsis as well as orbit inclination,
excentricity, etc. To our knowledge, such equations have
not been described elsewhere. Analytical development
can be found in King-Hele [1964]. In this fundamen-
tal book the author studied contraction of orbits under
the influence of drag, in a spherically symmetrical at-
mosphere then in an oblate atmosphere. He gets very
complex equations, always presented in analytical form,
taking into account the variation of the orbital parame-
ters orbit after orbit. Here we just compute ∆v for each
individual orbit.

We will present detailed validation studies performed
by comparing ∆v calculations from a state of the art com-
plete model with our simple equations in a wide variety
of cases, and show that the results are always extremely
accurate.


